Nominal Algebra and the HSP Theorem
نویسنده
چکیده
Nominal algebra is a logic of equality developed to reason algebraically in the presence of binding. In previous work it has been shown how nominal algebra can be used to specify and reason algebraically about systems with binding, such as first-order logic, the lambda-calculus, or process calculi. Nominal algebra has a semantics in nominal sets (sets with a finitely-supported permutation action); previous work proved soundness and completeness. The HSP theorem characterises the class of models of an algebraic theory as a class closed under homomorphic images, subalgebras, and products, and is a fundamental result of universal algebra. It is not obvious that nominal algebra should satisfy the HSP theorem: nominal algebra axioms are subject to so-called freshness conditions which give them some flavour of implication; nominal sets have significantly richer structure than the sets semantics traditionally used in universal algebra. The usual method of proof for the HSP theorem does not obviously transfer to the nominal algebra setting. In this paper we give the constructions which show that, after all, a ‘nominal’ version of the HSP theorem holds for nominal algebra; it corresponds to closure under homomorphic images, subalgebras, products, and an atoms-abstraction construction specific to nominal-style semantics.
منابع مشابه
Equational Varieties of Boolean Functions via the Hsp Theorem
A variant of a theorem of Ekin, Foldes, Hammer and Hellerstein concerning equational characterizations of Boolean function classes is proved using methods of universal algebra. The proof is not constructive but establishes a direct connection with the Birkhoff-Tarski HSP Theorem and the theory of equational classes of universal algebras.
متن کاملA note on spectral mapping theorem
This paper aims to present the well-known spectral mapping theorem for multi-variable functions.
متن کاملTopological Birkhoff
One of the most fundamental mathematical contributions of Garrett Birkhoff is the HSP theorem, which implies that a finite algebra B satisfies all equations that hold in a finite algebra A of the same signature if and only if B is a homomorphic image of a subalgebra of a finite power of A. On the other hand, if A is infinite, then in general one needs to take an infinite power in order to obtai...
متن کاملEQ-logics with delta connective
In this paper we continue development of formal theory of a special class offuzzy logics, called EQ-logics. Unlike fuzzy logics being extensions of theMTL-logic in which the basic connective is implication, the basic connective inEQ-logics is equivalence. Therefore, a new algebra of truth values calledEQ-algebra was developed. This is a lower semilattice with top element endowed with two binary...
متن کاملDigital Borsuk-Ulam theorem
The aim of this paper is to compute a simplicial cohomology group of some specific digital images. Then we define ringand algebra structures of a digital cohomology with the cup product. Finally, we prove a special case of the Borsuk-Ulam theorem fordigital images.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Log. Comput.
دوره 19 شماره
صفحات -
تاریخ انتشار 2009